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Abstract

It is shown that a discrete delta function can be constructed using a technique developed by Anita Mayo [The fast solu-
tion of Poisson’s and the biharmonic equations on irregular regions, SIAM J. Sci. Comput. 21 (1984) 285-299] for the
numerical solution of elliptic equations with discontinuous source terms. This delta function is concentrated on the zero
level set of a continuous function. In two space dimensions, this corresponds to a line and a surface in three space dimen-
sions. Delta functions that are first and second order accurate are formulated in both two and three dimensions in terms of a
level set function. The numerical implementation of these delta functions achieves the expected order of accuracy.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Level set and front tracking methods often rely on discrete delta functions for many aspects of their
implementation from singular force distributions to the computation of surface area [4,6,9-11,13]. In many
situations, the delta function is expressed as a one-dimensional function of a level set function or the signed
distance function to the interface. However, Tornberg and Engquist [12] show that delta functions
expressed in this fashion can fail to correctly compute arc-length and result in poor convergence when
solving elliptic equations.

Recently, Engquist et al. [3] and Calhoun and Smereka [2] have developed discrete delta functions which
ameliorate the problem outlined in [12]. In both papers, the authors devised simple (but different) expres-
sions for discrete delta functions that are first order accurate. In addition, Engquist et al. [3] also deduce a
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second order accurate version based on a product of delta functions which is more complex and is only
implemented in two dimensions.

In this paper, we provide a detailed derivation of the results contained in [2] and extend the method to
second order accuracy in both two and three dimensions. The proposed delta function is relatively straight-
forward to evaluate and its support is contained within a region whose width is at most that of a single
mesh cell.

The approach used in this paper is based on the work of Mayo [7,8] who developed a technique for solv-
ing elliptic problems with discontinuities. Mayo’s work has been central in the development of a number of
numerical methods for interface problems, see, for example [5,6].

2. Delta functions

Let us consider a subset of R? denoted, Q, with a closed curve I' contained inside this region. Let d(d) be
the usual one-dimensional Dirac delta function. Then, if d(x,y) is the signed distance to I" from a point (x,y)
then the arc-length of I' is given by

L:/é(d(x,y))dxdy.

We let (x,,y]) denote the location of the grid points and let / represent the mesh size. Our goal is to find a
discrete version of & denoted J;; ; so that this property is maintained to some order in /. In other words

L:thé,-J-JrO(h”), (1)

where p > 0. We shall provide expressions for gi,j that are both first and second order accurate. We also
would like to use this discrete delta function in the evaluation line and surface integrals. That is to say, if

1= [t ds= [ rersta) drdy )
r
then we expect our discrete delta function to have the property

1= 1o, i+ 00 (3)
ij

Our computations seem to indicate that (3) will be second order provided that one uses a second order
accurate delta function, see the results presented in Tables 3 and 5.

3. Discrete Green’s and delta functions

The Green’s function for Laplace’s equation in one space dimension on the unit interval satisfies

d’g

A2

where d(x) is the one-dimensional delta function and 0 < « < 1. It is well known that this can be replaced by
the equivalent problem

g"(x) =0 with g(0) =g(1) =0 (5)

subject to the jump conditions at x = «

=Jd(x—a) with g(0) =g(1) =0, (4)
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g'()], =1 and [g(x)], =0, (6)

where [¢(2)], denotes the jump in ¢ in the x-direction. More precisely, [g()] = g(e") — q(o”) with g(o*) =
lim, +q(a £ ¢). The notation, [ ], may seem a little strange but it will prove useful in our extension to two
dimensions.

Mayo [7,8] introduced a numerical method to solve problems like (5) and (6) by finding the corre-
sponding discrete version of (4); thereby yielding a discrete delta function. For the convenience of the
reader, we will review Mayo’s work and consider the discretization of (5) and (6) in which the jumps
are located at x = «. This is done as follows. We let x; denote the location of the grid points and let 4
represent the mesh size. We define two types of grid points. The first type are irregular points (after Mayo
[7]). These are grid points that are within one mesh spacing of the interface; in other words if the interface
is between x; and x; then points x; and x;, are irregular points. All the other grid points are denoted
as regular points. For regular points one has the center differenced approximation for the second
derivative

¢tn) = St L) | g, ™)
Next, a finite difference approximation for g”(x;) will be formulated when x; is an irregular point. First con-
sider the situation when x,_; < o < x;. From a Taylor series expansion one has

Gl 1) =g ) — g (x0) + ' g(x) + O) 8

and

80 = g(x) + g (x7) + 2g"(x") + OGF), Q

where i = o — x;,_; and hy = x; — a. It also follows from a Taylor series expansion that
g(0") =g x) —g'(x) + O(h") and g"(a") = ¢"(x;) + O(h). (10)

One can use (10) in (9) and the fact that 4, + 4, = A to obtain

2 2

/ h " / h "
g(x) = g(0) = hig (o) + g (o) + hg' () — g () + O(). (1)
Combining (8) and (11) we find
n hy
gxi1) = gx) = —hg'(x) + =5 ¢" () = [g()], + Mg (@) = 3 [&" (@), + OF). (12)
Since there are no jumps in g for x; > o then
! h2 "
g(xiv1) — g(x;) = hg'(x,) +3g (x;) + O(h3)- (13)

Adding (12) and (13) and manipulating we find

o) = S =2 L) L (), — mlg ), + 5 ' )L,) + OO0 19

For the problem at hand [g(«)] = 0, [g'(®)]« = 1, [¢"(¢)]x = 0 and we find (14) becomes

() = S 2gh(f ) et % +O(h). (15)
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A similar analysis can be completed when x; < « < x; ; |; combining this with (15) we have, for irregular
points, the following:

" i -2 i T 8o <
g'x) = S E G O, (16)
where

and:

5" (Xipr — o)/l if x <o < xiay,
0, otherwise,
~— (“—X[,I)/hz if Xi—p < o <X,
0, otherwise.
We combine (7) and (16) to obtain, for all grid points, the following:
L — 20, .
g//(xl_) — gl+l h%l + i1
where Oy(-) denotes errors that occur only at irregular points.

For the problem of interest g’(x;) =0 and we use (18) to obtain the following finite difference
approximation:

81— 28+ 8 <
% =9, (19)

Upon comparing (19) to (4) and we infer that (17) is a discrete delta function.

One can verify that if « does not lie exactly on a grid point, the function 4, is nonzero only at the two grid
points x;, x;4+1 for which x; <« < x; + 1. If « lies exactly on a grid point, then J; is nonzero only at x; = a.
Furthermore, for any «, 0 < « < 1, we have

> o =1. (20)
We recall that a delta function has the following property:
1
/ ox—y)dy=1
0

for 0 < x < 1; (20) is a discrete version of this property. We point out that 5 is the same as 0y, (defined by
(55)) in one dimension but as we shall see they differ in two dimensions.

— 31+ O1(h) + O(), (18)

4. Extension to two dimensions

In this section, we extend the previous results to two dimensions. Let n be the outward drawn unit
normal vector to I and [¢] be the jump across I'; more precisely
lq] = lim g(a+ en) — g(a — en), (21)

where « = («,,0,) is a point on the interface. It also useful to define [ ], the jump in the x-direction and [ ],
the jump in the y-direction as
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lq], = q(o) o) —q(or o) and  [g], = q(on, o)) — qlon, ). (22)
It is easy to verify that (21) and (22) are related as follows:

9], = lg)sgn[n] and [g], = [glsgn[n,]. (23)
As was done in one dimension, we devise the discrete delta function by considering the elliptic problem

Ag(x,y) = 6(d(x,y)), (24)
where 4 = a_f + 65. Let us now, using (21), rewrite (24) as

4g(x,y) =0 (25)
subject to the jump conditions at x =TI

[0.g]=1 and [g] =0, (26)

where 0, is the directional derivative in the normal direction. We shall deduce the delta function by applying
the results of the previous section.
First, we observe that for regular points we have the standard center differenced approximation

Ag(xi,y;) = Ahgi,j + O(hz)a (27)
where (x;,);) are the grid locations and 4, is the discrete five-point Laplacian, namely

Aig, = 8iy1j — 2821',_,‘ + 8oy n &ij+1 — 2g2i.,j + 8ij-1 . (28)
h h
To obtain an expression similar to (27) for irregular points, we apply (14) in both the x and y directions
while recognizing that [g] = 0 implies [g]. = [g], = 0. In the x-direction, the corresponding Taylor series
expansion is about the point («,,y;) and in the y-direction it is about the point (x;,). Both of these points
are on the interface. This yields an expression for the discrete Laplacian of g when g has discontinuities in
its first and second derivative along an interface. We have for irregular points

Ag(x1,y;) = A, — 01y + O(h), (29)
where
~ ~(dx ~(—x ~( ~(—
=045 45 45 (30)
with:
h2 5(+Y) — h: [an]x + % (h;)z[a)zcxg]x lf xi g OCX < xi+1?
" 0, otherwise,
2500 ] 1ol =), i X <o <y
" 0, otherwise,
s hy[0,8], +3 (h;)z[a)zwg]y if y; <oy <y
Y 0, otherwise,

2300 _ el — 1)’ 0ngl, iy, <a <y,
0, otherwise.

We also have &7 =x; .1 — o, and b, = o, — x;_g. h; and & are defined in a similar fashion. We point out
that [ -], terms are evaluated at (o,.y;). In a similar way, [ -], terms are evaluated at (x;,x,).
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Since 4g(x;,y;) = 0 it follows from (27) and (29) that
418;; = b1+ Os(h) + O(?) (31)

for all grid points. The reader is reminded Oj(*) indicates a term that is only nonzero at irregular points.
This is the discrete form of (24) and the right hand side represents the discrete delta function plus error
terms. It is easy to extend (30) to three space dimensions.

5. Order of accuracy

A discrete delta function said to have an order of accuracy p if

1= thgi,jfi.j + O(hp) as h — 0, (32)
i

where [ is given by (2). For example, if we consider the one dimension version of (32) and use the delta
function given by (17) then one can prove that p = 2; see [1].

It would be natural to rigorously establish the order of accuracy of the approximate delta function given
by (30). This appears to be a difficult task and will not be undertaken here. Instead, we shall provide a heu-
ristic argument for the order of accuracy by considering the calculation of the arc-length. Of course, this
merely provides an upper bound on the order of accuracy since (32) is a much more stringent test. Never-
theless, the argument below will give us some idea of what to expect.

We begin the discussion by observing that (30) can be written in the form

glzj :g+b7 (33)
h

where a and b are somewhat complicated functions determined from (30). The important feature is that a

and b are O(1) in A. It practice a and b will be determined to some level of accuracy in s and we write
a=a,+O(H") and b=0b,+ OMH").

The computation of a,, and b,, will be explained in Sections 6 and 7. We substitute these expressions into
(33) to obtain

< < (m)

where
~(m) [s]
5[‘1. == + b,,. (35)

Eq. (34) is used to rewrite (31) as
Mgy, = 0y + Ou(") + Ox(h) + O(R?). (36)
We recall that
/ Agdxdy = / o(d(x,y)) dxdy = L.
Q Q

The discrete version of the above expression is

~<(m)
Lh = thAhgi,j = théi‘j +Eh,
ij ij
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where

Ey =Y I (O1(h") + O(h) + O(I)). (37)

We conjecture that

. 2"'(’")_
lim Z,:h S, =L

and that the rate of convergence is determined by the error term, Ej,. Let us examine E;, in more detail. We
first observe that there O(42) grid points. Since the interface is a one-dimensional object then there are
O(h™") irregular points. The O(h%) terms in (37) are present at all grid points whereas any O; term is only
nonzero at irregular points. Combining these observations with (37) one obtains

E, = O(K?) + O(h" ). (38)

Therefore, it follows that the arc-length can be computed to second order accuracy if we evaluate « to sec-
ond order accuracy and b to first order accuracy. In addition, it follows if we evaluate a to first order accu-
racy and ignore the b term then the arc-length computation will be first order accurate. We stress that these
are heuristic arguments and only establish a plausible order of accuracy for the computation of the arc-
length. The numerical results presented in Section 8 confirm these conjectures. In addition, the numerical
results also provide evidence that the order of accuracy is maintained for integrals of the form given by (2).

6. First order implementation

It follows from (30), that if we neglect the jumps in the second derivatives and evaluate [0,g]. and [0,g],
to first order then m = 0. The argument in Section 5 implies this should result in a first order method. The
necessary jumps can be computed as follows. Let n = (n,,n,) be the unit normal vector and s = (sy,s,) be a
unit vector tangent to I'. We have the following directional derivatives:

0, = n,0, + n,0, (39)
and
0y = 5,0, + 5,0y. (40)

For the problem at hand, [0,¢] = 1 and [g] = 0. The latter implies [0,g] = 0. Combining [0,¢] = 1 and [0,g] = 0
with (39) and (40) yields

&) =n. and [g]=n,. (41)
Egs. (41) and (23) produce
&), = Ine| and [g,], = [n,]. (42)

We will represent the interface as the zero level set of ¢(x,y) and assume that we have a given discret-
ization ¢, ;= ¢(x;y;) on a grid of mesh size 7. We make the following definitions:

Py =iy iy — b1y b1y — iy
D;(pl/ _ + Jh J , Dx d)l/ — J - o , D;)q()ld _ +1.J 5 J :

+ — 0 . . ..
where D¢, ;, D, ¢;;, and D ¢,;; are analogously defined. It is convenient to make the definition

Vabisl = \/ (DU,) + (D)) + .
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where ¢ is a small number that prevents division by zero. In the computations presented in Section 8, we
take ¢ = 107'°. We will now use the level set implementation and the above definitions to deduce a first
order approximation to (30). By using a Taylor series it is easy for one to establish

Pis1 Dijen
+ ixly 2 + i,J 2
S =|—L|+0(h") and &> =|=—|+0(h). (43)
Dxi ¢i,j g qusz:j
In addition, it is straightforward to verify
¢ D¢y ¢ Dy,

+O(h) and n,= + O(h). (44)

ny = - & - €
Vol Vil Vol [Vl
These are of second order accuracy at grid points; however, since they are used at the interface their accu-
racy is first order.
If we use the approximations given by (43) and (44) in (30) and ignore the jumps in the second derivatives
then we arrive at the following first order expression for the discrete delta function

3 <) =) () (=)

5(¢i,j) = 5u + 51‘,/‘ + 5111‘ + 5111' ’ )
where:
[
() S i ¢, <0,
v = { D0, i,
0, otherwise,
¢, D0l
() S oy <O,
5i7j =< h |Dx ¢i,j||vo¢i,j|
0, otherwise,
|¢ij+1DS¢ij| ;
~(+) S if ¢, ;,;,; <O,
= {’“ DigulIVagl
0, otherwise,
DY,
- M if ¢;,¢;,1 <0,
5”- =< h |Dy ¢i,j||vo¢i,j|
0, otherwise.

A first order expression in three space dimensions is easy to infer from the above result.

Remark. The above implementation is slightly different from the one presented in [2]. It appears to be
marginally more accurate.

7. Second order implementation

In this section, we extend the formulation to second order accuracy. As we shall see the extension to
three dimensions from two dimensions is not as straightforward as it is in the first order case. In both cases,
the main issue is the computation of the jumps in the second derivatives of g.
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7.1. Two-dimensional case
To deduce a second order accurate discrete delta function from (30) we must deduce hf and hyi to third
order and compute the jumps in the second derivatives to first order. We begin with the latter. It follows
from (25) that
2
0.8 + 8] =0
and from the jump conditions that

[0;.¢] = [0.8] =

From the last three equations and (41) we can deduce the following system:

Syl Sxly, Sy, SyHy, [a,zcxg] n-o,n=20
52 25,8, 5 [afyg] + n-o,s =0.
1 0 1 [62 g 0

pAd
The above system is solved to obtain
[afxg} =—-D and [%g]

where

D = (syn, + syn,)n - O,s. (46)
Finally, we note that

0..8], = —Dsgn(n,) and [0} g] = Dsgn(n,). (47)

Expressions (42) and (47) will be used in (30). In our implementation, we use the following tangential deriv-
ative s = (—n,,n,). When evaluating the derivatives in (47) we use center differences.

Now we shall discuss how to find /#; and h}i to third order. It is sufficient to describe this in one dimen-
sion since the computation is done direction-by-direction. We present the derivation of /;; the other expres-
sions can be deduced in a similar fashion. Since we are concerned with A, the case when the interface is
between x; and x;+; must be considered. We will expand ¢ in a Taylor series expansion about the center
of this cell,

d(u) = .+ dLu+= ¢>”2 o(h’), (48)

where u = x — (x; + %) and the subscript denotes the value at the cell center. The interface is located by the
relation ¢(uy) = 0 which we solve to determine uy; we obtain

. ¢rgr 3
u = 4+ O(h
ST g (7).
Since u; is measured with respect to the cell center then it follows that
h
]’l+ = < — Uup.

T2
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In the numerical implementation of the above formula, we use the following approximations:
1
¢c = R (_(15571 + 9¢i + 9¢i+1 - ¢i+2) + O(h4),
¢i+1 — ¢

o ==+ Ow),
¢ = b1 — (¢ ‘;h‘fiﬂ) + ¢iio +O(R).

When the interface is not properly resolved by the grid then the above formula can fail. Therefore, we mod-
ify it as follows:

ﬁ—ul if |u1| <h/2,

2
¢i+l
Dy ¢,

We observe that the provisional case in the above formula is just the first order expression used in the pre-
vious section.

To obtain a second order delta function one starts with (30). For the jumps in the first derivative one uses
(42) and for the jumps in the second derivative one uses (47). All derivatives are computed using center
differenced approximations. This yields approximations that are first order at the interface for the second
derivative jump terms. Third order accurate expressions for 4> and hvi (e.g. (49)) are used in (30). In addition,
it would appear that we need a second order approximations for n, and n, to evaluate [0,g], and [3,g]),
however, (44) is sufficient as one can show the O(/) terms cancel when computing (30). Finally, the condition-
als contained in (30) are implemented as in (45). This yields a second order accurate discrete delta function.

(49)

, otherwise.

Remark. Performing the Taylor series expansion in (48) about the center of the cell will ensure i} + A = h
which improves the accuracy.

7.2. Three-dimensional case

The above result can be extended to three dimensions in a relatively straightforward fashion. The main
difference is that we need to introduce another tangent vector which we will denote as ¢ and assume that
{n,s,t} forms an orthonormal triad at each point on the surface. We shall use the following directional
derivatives:

0n = n 0, + n,0, + n.0., (50)
as = Sxax + Syay + Szaz; (51)
0, = t,0, + 1,0, + 1.0.. (52)

It follows from the jump conditions (26) that
[0.g] =1 and [0,¢] =[0g] =0
from which one can deduce
Vgl =n. (53)

To obtain second order accuracy we need to find the jumps in the second derivatives. These are deter-
mined by noting that

[05,8) = [0,,8] = [0,g] = [0%,8] = [0g] = 0.
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The above relations along with [g,, + g, + g.-] = 0 and (53) allow to us deduce a set of equations for the
jumps in the second derivatives, namely

Syl Syl T+ SyNy SN+ Sony Syn, SR+ Son, Son; [aixg ] 0
Ly Ly +bn, Gntn, tn, b+ G, tn || [008] 0
Syty Sl F Syt Syt +S:t Syt Syt A4S, St [6§2g] n- ot
s 28,5, 25,8, s 25,5, s? [aiyg} n-os | 0.
2 2t,t, 2.1, t§ 21, 2 [afzg] n-ot
1 0 0 1 0 1 [0 0
There are many choices for the tangential vectors, we use the following:
0,n,, —ny)T if n2 + ni < zlw
o \/1 +n?
%7 otherwise,
t=nxs.

The vectors, {n,s,t}, form an orthonormal triad at each point on the surface. With these vectors, the above
system can be solved to obtain [0 g], [6)2n/g]7 and [02g]. One can obtain an analytical solution but it is
rather unwieldy so we used Gaussian elimination (numerically) instead. Once the jumps are known the dis-
crete delta function can be computed using a natural extension of (30) to three dimensions.

8. Results
The first example we consider is motivated by the work of Tornberg and Engquist [12]. In that work,

they show that one-dimensional delta functions of distance functions can fail. In more detail, consider
the discrete approximation to the arc-length given by

Lh,w - Z 5w(di.,j>h27 (54)
ij
where
_ 2
sy = {7 WO <o 55)
0, x| = w

and d;; is the signed distance from a grid point to the interface. Tornberg and Engquist prove that for this
type of delta function, there can be O(1) errors in the approximation of L,,, to L. In particular, they prove
that if the interface is exactly at 45° to the grid then one finds

L L
lim 2" ~1.12 and lim =% ~ 1.018.
h—0 h—0 L

Consider a square whose sides are at 45° to the grid and are of length v/2, then the signed distance function
is

O(x,y) if [x—y|>1and |x+y|>1,
Y(x,y), otherwise,

dmwz{
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Table 1
Computation of the arc-length for the square using both the first order and second order discrete delta function
Mesh size First order Second order

Relative error Order Relative error Order
0.2 5.85%x 1072 9.33x 1073
0.1 2.93%x1072 1.00 4.67x1073 1.00
0.05 1.46 x 1072 1.00 2.33%1073 1.00
0.025 7.32%x1073 1.00 1.17x 1073 1.00
0.0125 3.66x 1073 1.00 5.83x 107* 1.00
0.00625 1.83x 1073 1.00 292x107* 1.00
where

6(x,y) = min (\/(x:t 1?4320/ + (v £ 1)2>
and

Yix,y) = ([ + vl - 1)/V2.

If we use (54) then one can show (see [2]) that the formula does not converge and the relative error is ~0.12,
for all values of /: in agreement with [12]. On the other hand, we observe that both the first and second
order implementation of our delta function converge to the correct answer. Due to the presence of corners,
we cannot obtain second order accuracy with the second order method (see Table 1).

The next example we will discuss is the computation of the arc-length of an ellipse. For this we take

2 2
(,b - E +}b}72 — 1.

In our computations, we take ¢ = 1.5 and » = 0.75. The arc-length can be computed directly and the exact
answer is ~7.266336165. The results of our computation are shown in Table 2. In these computations, we
have presented the average over 50 trials in which the ellipse has been shifted in the x and y directions and
rotated by random amounts. The first order results are slightly better than first order whereas the compu-
tations using the second order algorithm are clearly second order.

Now, we consider the computation of the line integral

/wlf(x,y) ds (56)

where f(x,y) = 3x* — y*. The exact answer is 2r. This was computed by first evaluating the discrete delta
function with ¢ = x> + y*> — 1 and then using (3). The results are shown in Table 3. These results are aver-

Table 2
Computation of the arc-length for an ellipse using both the first order and second order discrete delta functions
Mesh size First order Second order

Relative error Order Relative error Order
0.2 9.38x 107° 2.68x 1073
0.1 2.23x 1077 2.07 549x 1074 2.29
0.05 8.12x 107* 1.46 1.32x107* 2.05
0.025 271x107* 1.58 2.90% 1073 2.18
0.0125 7.58x 1073 1.83 7.79 x 107° 1.90

0.00625 3.04%x107° 1.32 1.84% 107 2.08
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Table 3
Computation of the line integral (56) using both the first order and second order discrete delta functions
Mesh size First order Second order

Relative error Order Relative error Order
0.2 9.83x 1073 1.23x1072
0.1 3.94x 1073 1.31 3.13x107° 2.05
0.05 1.78 x 1073 1.14 7.78 x 1073 2.01
0.025 5.57x107* 1.68 1.96 x107* 1.99
0.0125 2.18%x 1074 1.35 492%107° 1.99
0.00625 7.49x107° 1.60 1.22x1073 2.01
0.003125 2.62%107° 1.46 3.05x107° 2.00
Table 4
Computation of the surface area of an ellipsoid using both the first order and second order discrete delta functions
Mesh size First order Second order

Relative error Order Relative error Order
0.2 2751072 7.00x 1073
0.1 6.81x 1073 2.01 9.69x 107* 2.85
0.05 1.71x107* 1.99 1.79x 1074 243
0.025 432x107* 1.99 4.08x 1073 2.13
0.0125 1.20x 1074 1.86 9.30x107¢ 2.13
Table 5
Computation of the surface integral using both the first and second order discrete delta functions
Mesh size First order Second order

Relative error Order Relative error Order
0.2 1.68 x 1072 1.24 %1072
0.1 292x1073 2.52 510x107* 4.61
0.05 7.60x 107 1.95 1.39x 1074 1.87
0.025 1.53x107* 2.31 3.39%x107° 2.04
0.0125 5.12x107° 1.57 8.42x107° 2.01

aged over 50 trials, where, in each case the grid was shifted in the x and y directions by random amounts.
The results are consistent with the expected order of accuracy.
The third example we consider is the computation of the surface area of an ellipsoid. For this, we take
2 2 2

X y z
¢:?+—+§*1.

In our computations, we take a = 1.5, b = 0.75, and ¢ = 0.5. Here, the surface area can be computed accu-
rately using numerical quadrature and its value is 9.901821. Table 4 presents the results of our computa-
tions in which the ellipsoid has been rotated (using the 3 Euler angles) and translated in each coordinate
direction by random amounts. We have used 20 trials. The results clearly demonstrate that the method
is consistent with the expected order of accuracy.

The last example we consider is the computation of the following surface integral:

407

/ (4—37+2* —2)dd =—.
x24y2+22=1 3
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The discrete delta function was evaluation using ¢ = x> + y*> + z> — 1. Our computations were the average
of 20 trials each of which was shifted by a random amount in each coordinate direction. The results are
shown in Table 5 and are consistent with the expected order of accuracy.

Remark. In all of our calculations we take ¢ = 1071°.

9. Summary

In this work, we have developed a discrete delta function that is concentrated on lines in two dimensions
and surfaces in three dimensions. A level set representation of the interface is used, consequently this delta
function concentrated near its zero level set. In fact, the delta function in concentrated within one grid cell on
either side of the interface. We have provided both a first and second order accurate formulation of this delta
function in two and three dimensions. We have used this discrete delta function to compute various line and
surface integrals. Our computed examples show that the method realizes the expected order of accuracy.

The formulation of this discrete delta function is based on a method developed by Mayo [7,8] for the
solution of elliptic equations with discontinuities. In this approach, the Laplacian is discretized in a manner
that properly accounts for the jump conditions that need to be satisfied near the interface. In this way, the
jump conditions now appear as source terms in a nonhomogeneous elliptic equation. The resulting source
terms are, in fact, the discrete delta function.
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