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Abstract

It is shown that a discrete delta function can be constructed using a technique developed by AnitaMayo [The fast solu-

tion of Poisson�s and the biharmonic equations on irregular regions, SIAM J. Sci. Comput. 21 (1984) 285–299] for the

numerical solution of elliptic equations with discontinuous source terms. This delta function is concentrated on the zero

level set of a continuous function. In two space dimensions, this corresponds to a line and a surface in three space dimen-

sions.Delta functions that are first and secondorder accurate are formulated inboth twoand three dimensions in termsof a

level set function. The numerical implementation of these delta functions achieves the expected order of accuracy.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Level set and front tracking methods often rely on discrete delta functions for many aspects of their

implementation from singular force distributions to the computation of surface area [4,6,9–11,13]. In many

situations, the delta function is expressed as a one-dimensional function of a level set function or the signed

distance function to the interface. However, Tornberg and Engquist [12] show that delta functions
expressed in this fashion can fail to correctly compute arc-length and result in poor convergence when

solving elliptic equations.

Recently, Engquist et al. [3] and Calhoun and Smereka [2] have developed discrete delta functions which

ameliorate the problem outlined in [12]. In both papers, the authors devised simple (but different) expres-

sions for discrete delta functions that are first order accurate. In addition, Engquist et al. [3] also deduce a
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second order accurate version based on a product of delta functions which is more complex and is only

implemented in two dimensions.

In this paper, we provide a detailed derivation of the results contained in [2] and extend the method to

second order accuracy in both two and three dimensions. The proposed delta function is relatively straight-

forward to evaluate and its support is contained within a region whose width is at most that of a single
mesh cell.

The approach used in this paper is based on the work of Mayo [7,8] who developed a technique for solv-

ing elliptic problems with discontinuities. Mayo�s work has been central in the development of a number of

numerical methods for interface problems, see, for example [5,6].
2. Delta functions

Let us consider a subset of R2 denoted, X, with a closed curve C contained inside this region. Let d(d) be
the usual one-dimensional Dirac delta function. Then, if d(x,y) is the signed distance to C from a point (x,y)

then the arc-length of C is given by
L ¼
Z
X
dðdðx; yÞÞ dxdy.
We let (xi,yj) denote the location of the grid points and let h represent the mesh size. Our goal is to find a

discrete version of d denoted edi;j so that this property is maintained to some order in h. In other words
L ¼
X
i;j

h2edi;j þOðhpÞ; ð1Þ
where p > 0. We shall provide expressions for edi;j that are both first and second order accurate. We also
would like to use this discrete delta function in the evaluation line and surface integrals. That is to say, if
I ¼
Z
C
f ðx; yÞ ds ¼

Z
X
f ðx; yÞdðdðx; yÞÞ dxdy; ð2Þ
then we expect our discrete delta function to have the property
I ¼
X
i;j

h2edi;jfi;j þOðhpÞ. ð3Þ
Our computations seem to indicate that (3) will be second order provided that one uses a second order

accurate delta function, see the results presented in Tables 3 and 5.
3. Discrete Green�s and delta functions

The Green�s function for Laplace�s equation in one space dimension on the unit interval satisfies
d2g
dx2

¼ dðx� aÞ with gð0Þ ¼ gð1Þ ¼ 0; ð4Þ
where d(x) is the one-dimensional delta function and 0 < a < 1. It is well known that this can be replaced by

the equivalent problem
g00ðxÞ ¼ 0 with gð0Þ ¼ gð1Þ ¼ 0 ð5Þ
subject to the jump conditions at x = a
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½g0ðaÞ�x ¼ 1 and ½gðaÞ�x ¼ 0; ð6Þ

where [q(a)]x denotes the jump in q in the x-direction. More precisely, [q(a)]x = q(a+) � q(a�) with qða�Þ ¼
lime!0þqða� eÞ. The notation, [ ]x, may seem a little strange but it will prove useful in our extension to two

dimensions.

Mayo [7,8] introduced a numerical method to solve problems like (5) and (6) by finding the corre-

sponding discrete version of (4); thereby yielding a discrete delta function. For the convenience of the

reader, we will review Mayo�s work and consider the discretization of (5) and (6) in which the jumps

are located at x = a. This is done as follows. We let xi denote the location of the grid points and let h
represent the mesh size. We define two types of grid points. The first type are irregular points (after Mayo

[7]). These are grid points that are within one mesh spacing of the interface; in other words if the interface

is between xi and xi+1 then points xi and xi+1 are irregular points. All the other grid points are denoted

as regular points. For regular points one has the center differenced approximation for the second

derivative
g00ðxiÞ ¼
gðxiþ1Þ � 2gðxiÞ þ gðxi�1Þ

h2
þOðh2Þ. ð7Þ
Next, a finite difference approximation for g00(xi) will be formulated when xi is an irregular point. First con-

sider the situation when xi� 1 < a < xi. From a Taylor series expansion one has
gðxi�1Þ ¼ gða�Þ � h1g0ða�Þ þ
h21
2
g00ða�Þ þOðh3Þ ð8Þ
and
gðxiÞ ¼ gðaþÞ þ h2g0ðaþÞ þ
h22
2
g00ðaþÞ þOðh3Þ; ð9Þ
where h1 = a � xi� 1 and h2 = xi � a. It also follows from a Taylor series expansion that
g0ðaþÞ ¼ g0ðxiÞ � h2g00ðxiÞ þOðh2Þ and g00ðaþÞ ¼ g00ðxiÞ þOðhÞ. ð10Þ
One can use (10) in (9) and the fact that h1 + h2 = h to obtain
gðxiÞ ¼ gðaþÞ � h1g0ðaþÞ þ
h21
2
g00ðaþÞ þ hg0ðxiÞ �

h2

2
g00ðxiÞ þOðh3Þ. ð11Þ
Combining (8) and (11) we find
gðxi�1Þ � gðxiÞ ¼ �hg0ðxiÞ þ
h2

2
g00ðxiÞ � ½gðaÞ�x þ h1½g0ðaÞ�x �

h21
2
½g00ðaÞ�x þOðh3Þ. ð12Þ
Since there are no jumps in g for xi > a then
gðxiþ1Þ � gðxiÞ ¼ hg0ðxiÞ þ
h2

2
g00ðxiÞ þOðh3Þ. ð13Þ
Adding (12) and (13) and manipulating we find
g00ðxiÞ ¼
gðxiþ1Þ � 2gðxiÞ þ gðxi�1Þ

h2
þ 1

h2
½gðaÞ�x � h1½g0ðaÞ�x þ

h21
2
½g00ðaÞ�x

� �
þOðhÞ. ð14Þ
For the problem at hand [g(a)]x = 0, [g 0(a)]x = 1, [g00(a)]x = 0 and we find (14) becomes
g00ðxiÞ ¼
gðxiþ1Þ � 2gðxiÞ þ gðxi�1Þ

h2
� h1
h2

þOðhÞ. ð15Þ
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A similar analysis can be completed when xi < a < xi + 1; combining this with (15) we have, for irregular

points, the following:
g00ðxiÞ ¼
giþ1 � 2gi þ gi�1

h2
� edi þOðhÞ; ð16Þ
where
edi ¼ edþ
i þ ed�

i ð17Þ

and:
edþ
i ¼ ðxiþ1 � aÞ=h2 if xi 6 a < xiþ1;

0; otherwise;

(

ed�
i ¼ ða� xi�1Þ=h2 if xi�1 < a < xi;

0; otherwise.

(

We combine (7) and (16) to obtain, for all grid points, the following:
g00ðxiÞ ¼
giþ1 � 2gi þ gi�1

h2
� edi þOIðhÞ þOðh2Þ; ð18Þ
where OI(Æ) denotes errors that occur only at irregular points.

For the problem of interest g00(xi) = 0 and we use (18) to obtain the following finite difference

approximation:
giþ1 � 2gi þ gi�1

h2
¼ edi. ð19Þ
Upon comparing (19) to (4) and we infer that (17) is a discrete delta function.

One can verify that if a does not lie exactly on a grid point, the function edi is nonzero only at the two grid
points xi, xi+1 for which xi < a < xi + 1. If a lies exactly on a grid point, then edi is nonzero only at xi = a.
Furthermore, for any a, 0 < a < 1, we have
X

i

edih ¼ 1. ð20Þ
We recall that a delta function has the following property:
Z 1

0

dðx� yÞ dy ¼ 1
for 0 < x < 1; (20) is a discrete version of this property. We point out that ed is the same as dh (defined by

(55)) in one dimension but as we shall see they differ in two dimensions.
4. Extension to two dimensions

In this section, we extend the previous results to two dimensions. Let n be the outward drawn unit

normal vector to C and [q] be the jump across C; more precisely
½q� ¼ lim
e!0þ

qðaþ enÞ � qða� enÞ; ð21Þ
where a = (ax,ay) is a point on the interface. It also useful to define [ ]x, the jump in the x-direction and [ ]y
the jump in the y-direction as
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½q�x ¼ qðaþx ; ayÞ � qða�x ; ayÞ and ½q�y ¼ qðax; aþy Þ � qðax; a�y Þ. ð22Þ
It is easy to verify that (21) and (22) are related as follows:
½q�x ¼ ½q�sgn½nx� and ½q�y ¼ ½q�sgn½ny �. ð23Þ
As was done in one dimension, we devise the discrete delta function by considering the elliptic problem
Dgðx; yÞ ¼ dðdðx; yÞÞ; ð24Þ

where D ¼ o2x þ o2y . Let us now, using (21), rewrite (24) as
Dgðx; yÞ ¼ 0 ð25Þ

subject to the jump conditions at x = C
½ong� ¼ 1 and ½g� ¼ 0; ð26Þ

where on is the directional derivative in the normal direction. We shall deduce the delta function by applying

the results of the previous section.

First, we observe that for regular points we have the standard center differenced approximation
Dgðxi; yiÞ ¼ Dhgi;j þOðh2Þ; ð27Þ
where (xi,yj) are the grid locations and Dh is the discrete five-point Laplacian, namely
Dhgi;j ¼
giþ1;j � 2gi;j þ gi�1;j

h2
þ
gi;jþ1 � 2gi;j þ gi;j�1

h2
. ð28Þ
To obtain an expression similar to (27) for irregular points, we apply (14) in both the x and y directions

while recognizing that [g] = 0 implies [g]x = [g]y = 0. In the x-direction, the corresponding Taylor series

expansion is about the point (ax,yj) and in the y-direction it is about the point (xi,ay). Both of these points

are on the interface. This yields an expression for the discrete Laplacian of g when g has discontinuities in

its first and second derivative along an interface. We have for irregular points
Dgðxi; yiÞ ¼ Dhgi;j � edi;j þOðhÞ; ð29Þ
where
edi;j ¼ edðþxÞ
i;j þ edð�xÞ

i;j þ edðþyÞ
i;j þ edð�yÞ

i;j ð30Þ
with:
h2edðþxÞ
i;j ¼ hþx ½oxg�x þ 1

2
ðhþx Þ

2½o2xxg�x if xi 6 ax < xiþ1;

0; otherwise;

(

h2edð�xÞ
i;j ¼ h�x ½oxg�x � 1

2
ðh�x Þ

2½o2xxg�x if xi�1 < ax < xi;

0; otherwise;

(

h2edðþyÞ
i;j ¼ hþy ½oyg�y þ 1

2
ðhþy Þ

2½o2yyg�y if yj 6 ay < yjþ1;

0; otherwise;

(

h2edð�yÞ
i;j ¼ hþy ½oyg�y � 1

2
ðh�y Þ

2½o2yyg�y if yj�1 < ay < yj;

0; otherwise.

(

We also have hþx ¼ xiþ1 � ax and h�x ¼ ax � xi�1. h

�
y and hþy are defined in a similar fashion. We point out

that [ Æ ]x terms are evaluated at (ax,yj). In a similar way, [ Æ ]y terms are evaluated at (xi,ay).
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Since Dg(xi,yj) = 0 it follows from (27) and (29) that
Dhgi;j ¼ edi;j þOIðhÞ þOðh2Þ ð31Þ
for all grid points. The reader is reminded OI(Æ) indicates a term that is only nonzero at irregular points.

This is the discrete form of (24) and the right hand side represents the discrete delta function plus error

terms. It is easy to extend (30) to three space dimensions.
5. Order of accuracy

A discrete delta function said to have an order of accuracy p if
I ¼
X
i;j

h2edi;jfi;j þOðhpÞ as h ! 0; ð32Þ
where I is given by (2). For example, if we consider the one dimension version of (32) and use the delta

function given by (17) then one can prove that p = 2; see [1].

It would be natural to rigorously establish the order of accuracy of the approximate delta function given

by (30). This appears to be a difficult task and will not be undertaken here. Instead, we shall provide a heu-

ristic argument for the order of accuracy by considering the calculation of the arc-length. Of course, this

merely provides an upper bound on the order of accuracy since (32) is a much more stringent test. Never-

theless, the argument below will give us some idea of what to expect.

We begin the discussion by observing that (30) can be written in the form
edi;j ¼
a
h
þ b; ð33Þ
where a and b are somewhat complicated functions determined from (30). The important feature is that a

and b are O(1) in h. It practice a and b will be determined to some level of accuracy in h and we write
a ¼ am þOðhmÞ and b ¼ bm þOðhmÞ.

The computation of am and bm will be explained in Sections 6 and 7. We substitute these expressions into

(33) to obtain
edi;j ¼ edðmÞ
i;j þOðhmÞ; ð34Þ
where
edðmÞ
i;j ¼ amþ1

h
þ bm. ð35Þ
Eq. (34) is used to rewrite (31) as
Dhgi;j ¼ edðmÞ
i;j þOIðhmÞ þOIðhÞ þOðh2Þ. ð36Þ
We recall that
Z
X
Dg dxdy ¼

Z
X
dðdðx; yÞÞ dxdy ¼ L.
The discrete version of the above expression is
Lh ¼
X
i;j

h2Dhgi;j ¼
X
i;j

h2edðmÞ
i;j þ Eh;
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where
Eh ¼
X
i;j

h2 OIðhmÞ þOIðhÞ þOðh2Þ
� �

. ð37Þ
We conjecture that
lim
h!0

X
i;j

h2edðmÞ
i;j ¼ L
and that the rate of convergence is determined by the error term, Eh. Let us examine Eh in more detail. We

first observe that there O(h�2) grid points. Since the interface is a one-dimensional object then there are
O(h�1) irregular points. The O(h2) terms in (37) are present at all grid points whereas any OI term is only

nonzero at irregular points. Combining these observations with (37) one obtains
Eh ¼ Oðh2Þ þOðhmþ1Þ. ð38Þ

Therefore, it follows that the arc-length can be computed to second order accuracy if we evaluate a to sec-

ond order accuracy and b to first order accuracy. In addition, it follows if we evaluate a to first order accu-

racy and ignore the b term then the arc-length computation will be first order accurate. We stress that these

are heuristic arguments and only establish a plausible order of accuracy for the computation of the arc-

length. The numerical results presented in Section 8 confirm these conjectures. In addition, the numerical

results also provide evidence that the order of accuracy is maintained for integrals of the form given by (2).
6. First order implementation

It follows from (30), that if we neglect the jumps in the second derivatives and evaluate [oxg]x and [oyg]y
to first order then m = 0. The argument in Section 5 implies this should result in a first order method. The

necessary jumps can be computed as follows. Let n = (nx,ny) be the unit normal vector and s = (sx,sy) be a

unit vector tangent to C. We have the following directional derivatives:
on ¼ nxox þ nyoy ð39Þ

and
os ¼ sxox þ syoy . ð40Þ

For the problem at hand, [ong] = 1 and [g] = 0. The latter implies [otg] = 0. Combining [ong] = 1 and [otg] = 0

with (39) and (40) yields
½gx� ¼ nx and ½gy � ¼ ny . ð41Þ
Eqs. (41) and (23) produce
½gx�x ¼ jnxj and ½gy �y ¼ jny j. ð42Þ
We will represent the interface as the zero level set of /(x,y) and assume that we have a given discret-

ization /i,j ” /(xi,yj) on a grid of mesh size h. We make the following definitions:
Dþ
x /i;j ¼

/iþ1;j � /i;j

h
; D�

x /i;j ¼
/i;j � /i�1;j

h
; D0

x/i;j ¼
/iþ1;j � /i�1;j

2h
;

where Dþ
y /i;j; D�

y /i;j; and D0
y/i;j are analogously defined. It is convenient to make the definition
jre
0/i;jj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD0

x/i;jÞ
2 þ ðD0

y/i;jÞ
2 þ e

q
;
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where e is a small number that prevents division by zero. In the computations presented in Section 8, we

take e = 10�10. We will now use the level set implementation and the above definitions to deduce a first

order approximation to (30). By using a Taylor series it is easy for one to establish
h�x ¼
/i�1;j

D�
x /i;j

�����
�����þOðh2Þ and h�y ¼

/i;j�1

D�
y /i;j

�����
�����þOðh2Þ. ð43Þ
In addition, it is straightforward to verify
nx ¼
ox/
jr/j ¼

D0
x/i;j

jre
0/i;jj

þOðhÞ and ny ¼
oy/
jr/j ¼

D0
y/i;j

jre
0/i;jj

þOðhÞ. ð44Þ
These are of second order accuracy at grid points; however, since they are used at the interface their accu-

racy is first order.

If we use the approximations given by (43) and (44) in (30) and ignore the jumps in the second derivatives

then we arrive at the following first order expression for the discrete delta function
edð/i;jÞ ¼ edðþxÞ
i;j þ edð�xÞ

i;j þ edðþyÞ
i;j þ edð�yÞ

i;j ; ð45Þ
where:
edðþxÞ
i;j ¼

j/iþ1;jD
0
x/i;jj

h2jDþ
x /i;jjjre

0/i;jj
if /i;j/iþ1;j 6 0;

0; otherwise;

8><>:
edð�xÞ
i;j ¼

j/i�1;jD
0
x/i;jj

h2jD�
x /i;jjjre

0/i;jj
if /i;j/i�1;j < 0;

0; otherwise;

8><>:
edðþyÞ
i;j ¼

j/i;jþ1D
0
y/i;jj

h2jDþ
y /i;jjjre

0/i;jj
if /i;j/i;jþ1 6 0;

0; otherwise;

8><>:
edð�yÞ
i;j ¼

j/i;j�1D
0
y/i;jj

h2jD�
y /i;jjjre

0/i;jj
if /i;j/i;j�1 < 0;

0; otherwise.

8><>:

A first order expression in three space dimensions is easy to infer from the above result.

Remark. The above implementation is slightly different from the one presented in [2]. It appears to be

marginally more accurate.
7. Second order implementation

In this section, we extend the formulation to second order accuracy. As we shall see the extension to
three dimensions from two dimensions is not as straightforward as it is in the first order case. In both cases,

the main issue is the computation of the jumps in the second derivatives of g.



P. Smereka / Journal of Computational Physics 211 (2006) 77–90 85
7.1. Two-dimensional case

To deduce a second order accurate discrete delta function from (30) we must deduce h�x and h�y to third

order and compute the jumps in the second derivatives to first order. We begin with the latter. It follows

from (25) that
½o2xxg þ o
2
yyg� ¼ 0
and from the jump conditions that
½o2sng� ¼ ½o2ssg� ¼ 0.
From the last three equations and (41) we can deduce the following system:
sxnx sxny þ synx syny
s2x 2sysx s2y
1 0 1

0B@
1CA ½o2xxg�

½o2xyg�
½o2yyg�

0BB@
1CCAþ

n � osn ¼ 0

n � oss
0

0B@
1CA ¼ 0.
The above system is solved to obtain
½o2xxg� ¼ �D and ½o2yyg� ¼ D;
where
D ¼ ðsxny þ synxÞn � oss. ð46Þ
Finally, we note that
½o2xxg�x ¼ �D sgn ðnxÞ and ½o2yyg�y ¼ D sgn ðnyÞ. ð47Þ
Expressions (42) and (47) will be used in (30). In our implementation, we use the following tangential deriv-

ative s = (�ny,nx). When evaluating the derivatives in (47) we use center differences.

Now we shall discuss how to find h�x and h�y to third order. It is sufficient to describe this in one dimen-

sion since the computation is done direction-by-direction. We present the derivation of hþx ; the other expres-
sions can be deduced in a similar fashion. Since we are concerned with hþx , the case when the interface is

between xi and xi+1 must be considered. We will expand / in a Taylor series expansion about the center

of this cell,
/ðuÞ ¼ /c þ /0
cuþ

1

2
/00

cu
2 þOðh3Þ; ð48Þ
where u ¼ x� ðxi þ h
2
Þ and the subscript denotes the value at the cell center. The interface is located by the

relation /(uI) = 0 which we solve to determine uI; we obtain
uI ¼ �/c

/0
c

� /00
c/

2
c

2/03
c

þOðh3Þ.
Since uI is measured with respect to the cell center then it follows that
hþx ¼ h
2
� uI.
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In the numerical implementation of the above formula, we use the following approximations:
/c ¼
1

16
ð�/i�1 þ 9/i þ 9/iþ1 � /iþ2Þ þOðh4Þ;

/0
c ¼

/iþ1 � /i

h
þOðh2Þ;

/00
c ¼

/i�1 � ð/i þ /iþ1Þ þ /iþ2

2h2
þOðh2Þ.
When the interface is not properly resolved by the grid then the above formula can fail. Therefore, we mod-

ify it as follows:
hþx ¼

h
2
� uI if juIj < h=2;

/iþ1

Dþ
x /i

���� ����; otherwise.

8>><>>: ð49Þ
We observe that the provisional case in the above formula is just the first order expression used in the pre-

vious section.

To obtain a second order delta function one starts with (30). For the jumps in the first derivative one uses

(42) and for the jumps in the second derivative one uses (47). All derivatives are computed using center

differenced approximations. This yields approximations that are first order at the interface for the second
derivative jump terms. Third order accurate expressions for h�x and h�y (e.g. (49)) are used in (30). In addition,

it would appear that we need a second order approximations for nx and ny to evaluate [oxg]x and [oyg]y,

however, (44) is sufficient as one can show the O(h) terms cancel when computing (30). Finally, the condition-

als contained in (30) are implemented as in (45). This yields a second order accurate discrete delta function.

Remark. Performing the Taylor series expansion in (48) about the center of the cell will ensure hþx þ h�x ¼ h
which improves the accuracy.
7.2. Three-dimensional case

The above result can be extended to three dimensions in a relatively straightforward fashion. The main

difference is that we need to introduce another tangent vector which we will denote as t and assume that

{n,s,t} forms an orthonormal triad at each point on the surface. We shall use the following directional

derivatives:
on ¼ nxox þ nyoy þ nzoz; ð50Þ
os ¼ sxox þ syoy þ szoz; ð51Þ
ot ¼ txox þ tyoy þ tzoz. ð52Þ
It follows from the jump conditions (26) that
½ong� ¼ 1 and ½otg� ¼ ½osg� ¼ 0
from which one can deduce
½rg� ¼ n. ð53Þ

To obtain second order accuracy we need to find the jumps in the second derivatives. These are deter-

mined by noting that
½o2sng� ¼ ½o2tng� ¼ ½o2stg� ¼ ½o2ssg� ¼ ½o2ttg� ¼ 0.
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The above relations along with [gxx + gyy + gzz] = 0 and (53) allow to us deduce a set of equations for the

jumps in the second derivatives, namely
sxnx sxny þ synx sxnz þ sznx syny synz þ szny sznz
txnx txny þ tynx txnz þ tznx tyny tynz þ tzny tznz
sxtx sxty þ sytx sxtz þ sztx syty sy tz þ szty sztz
s2x 2sysx 2sxsz s2y 2sysz s2z
t2x 2tytx 2txtz t2y 2tytz t2z
1 0 0 1 0 1

0BBBBBBBB@

1CCCCCCCCA

½o2xxg�
½o2xyg�
½o2xzg�
½o2yyg�
½o2yzg�
½o2zzg�

0BBBBBBBBBB@

1CCCCCCCCCCA
þ

0

0

n � ost
n � oss
n � ott
0

0BBBBBBBB@

1CCCCCCCCA
¼ 0.
There are many choices for the tangential vectors, we use the following:
s ¼

ð0; nz;�nyÞTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2y þ n2z

q if n2x þ n2y <
1
4
;

ðny ;�nx; 0ÞTffiffiffiffiffiffiffiffiffi
n2xþn2y

p ; otherwise;

8>>>><>>>>:
t ¼ n� s.
The vectors, {n,s,t}, form an orthonormal triad at each point on the surface. With these vectors, the above

system can be solved to obtain ½o2xxg�; ½o2yyg�; and ½o2zzg�. One can obtain an analytical solution but it is

rather unwieldy so we used Gaussian elimination (numerically) instead. Once the jumps are known the dis-

crete delta function can be computed using a natural extension of (30) to three dimensions.
8. Results

The first example we consider is motivated by the work of Tornberg and Engquist [12]. In that work,

they show that one-dimensional delta functions of distance functions can fail. In more detail, consider

the discrete approximation to the arc-length given by
Lh;w ¼
X
i;j

dwðdi;jÞh2; ð54Þ
where
dwðxÞ ¼
ðw� jxjÞ=w2; jxj < w;

0; jxj P w

�
ð55Þ
and di,j is the signed distance from a grid point to the interface. Tornberg and Engquist prove that for this
type of delta function, there can be O(1) errors in the approximation of Lh,w to L. In particular, they prove

that if the interface is exactly at 45� to the grid then one finds
lim
h!0

Lh;h

L
� 1.12 and lim

h!0

Lh;2h

L
� 1.018.
Consider a square whose sides are at 45� to the grid and are of length
ffiffiffi
2

p
, then the signed distance function

is
dðx; yÞ ¼
hðx; yÞ if jx� yj > 1 and jxþ yj > 1;

wðx; yÞ; otherwise;

�



Table 1

Computation of the arc-length for the square using both the first order and second order discrete delta function

Mesh size First order Second order

Relative error Order Relative error Order

0.2 5.85 · 10�2 9.33 · 10�3

0.1 2.93 · 10�2 1.00 4.67 · 10�3 1.00

0.05 1.46 · 10�2 1.00 2.33 · 10�3 1.00

0.025 7.32 · 10�3 1.00 1.17 · 10�3 1.00

0.0125 3.66 · 10�3 1.00 5.83 · 10�4 1.00

0.00625 1.83 · 10�3 1.00 2.92 · 10�4 1.00
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where
Table

Comp

Mesh

0.2

0.1

0.05

0.025

0.0125

0.0062
hðx; yÞ ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1Þ2 þ y2

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy � 1Þ2

q� �

and
wðx; yÞ ¼ jxj þ jyj � 1ð Þ=
ffiffiffi
2

p
.

If we use (54) then one can show (see [2]) that the formula does not converge and the relative error is �0.12,

for all values of h: in agreement with [12]. On the other hand, we observe that both the first and second

order implementation of our delta function converge to the correct answer. Due to the presence of corners,

we cannot obtain second order accuracy with the second order method (see Table 1).

The next example we will discuss is the computation of the arc-length of an ellipse. For this we take
/ ¼ x2

a2
þ y2

b2
� 1.
In our computations, we take a = 1.5 and b = 0.75. The arc-length can be computed directly and the exact

answer is �7.266336165. The results of our computation are shown in Table 2. In these computations, we

have presented the average over 50 trials in which the ellipse has been shifted in the x and y directions and

rotated by random amounts. The first order results are slightly better than first order whereas the compu-

tations using the second order algorithm are clearly second order.

Now, we consider the computation of the line integral
Z
x2þy2¼1

f ðx; yÞ ds ð56Þ
where f(x,y) = 3x2 � y2. The exact answer is 2p. This was computed by first evaluating the discrete delta

function with / = x2 + y2 � 1 and then using (3). The results are shown in Table 3. These results are aver-
2

utation of the arc-length for an ellipse using both the first order and second order discrete delta functions

size First order Second order

Relative error Order Relative error Order

9.38 · 10�3 2.68 · 10�3

2.23 · 10�3 2.07 5.49 · 10�4 2.29

8.12 · 10�4 1.46 1.32 · 10�4 2.05

2.71 · 10�4 1.58 2.90 · 10�5 2.18

7.58 · 10�5 1.83 7.79 · 10�6 1.90

5 3.04 · 10�5 1.32 1.84 · 10�6 2.08



Table 4

Computation of the surface area of an ellipsoid using both the first order and second order discrete delta functions

Mesh size First order Second order

Relative error Order Relative error Order

0.2 2.75 · 10�2 7.00 · 10�3

0.1 6.81 · 10�3 2.01 9.69 · 10�4 2.85

0.05 1.71 · 10�4 1.99 1.79 · 10�4 2.43

0.025 4.32 · 10�4 1.99 4.08 · 10�5 2.13

0.0125 1.20 · 10�4 1.86 9.30 · 10�6 2.13

Table 3

Computation of the line integral (56) using both the first order and second order discrete delta functions

Mesh size First order Second order

Relative error Order Relative error Order

0.2 9.83 · 10�3 1.23 · 10�2

0.1 3.94 · 10�3 1.31 3.13 · 10�3 2.05

0.05 1.78 · 10�3 1.14 7.78 · 10�3 2.01

0.025 5.57 · 10�4 1.68 1.96 · 10�4 1.99

0.0125 2.18 · 10�4 1.35 4.92 · 10�5 1.99

0.00625 7.49 · 10�5 1.60 1.22 · 10�5 2.01

0.003125 2.62 · 10�5 1.46 3.05 · 10�6 2.00

Table 5

Computation of the surface integral using both the first and second order discrete delta functions

Mesh size First order Second order

Relative error Order Relative error Order

0.2 1.68 · 10�2 1.24 · 10�2

0.1 2.92 · 10�3 2.52 5.10 · 10�4 4.61

0.05 7.60 · 10�4 1.95 1.39 · 10�4 1.87

0.025 1.53 · 10�4 2.31 3.39 · 10�5 2.04

0.0125 5.12 · 10�5 1.57 8.42 · 10�6 2.01
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aged over 50 trials, where, in each case the grid was shifted in the x and y directions by random amounts.

The results are consistent with the expected order of accuracy.

The third example we consider is the computation of the surface area of an ellipsoid. For this, we take
/ ¼ x2

a2
þ y2

b2
þ z2

c2
� 1.
In our computations, we take a = 1.5, b = 0.75, and c = 0.5. Here, the surface area can be computed accu-

rately using numerical quadrature and its value is �9.901821. Table 4 presents the results of our computa-

tions in which the ellipsoid has been rotated (using the 3 Euler angles) and translated in each coordinate
direction by random amounts. We have used 20 trials. The results clearly demonstrate that the method

is consistent with the expected order of accuracy.

The last example we consider is the computation of the following surface integral:
Z
x2þy2þz2¼1

ð4� 3x2 þ 2y2 � z2Þ dA ¼ 40p
3

.
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The discrete delta function was evaluation using / = x2 + y2 + z2 � 1. Our computations were the average

of 20 trials each of which was shifted by a random amount in each coordinate direction. The results are

shown in Table 5 and are consistent with the expected order of accuracy.

Remark. In all of our calculations we take e = 10�10.
9. Summary

In this work, we have developed a discrete delta function that is concentrated on lines in two dimensions

and surfaces in three dimensions. A level set representation of the interface is used, consequently this delta

function concentrated near its zero level set. In fact, the delta function in concentrated within one grid cell on

either side of the interface. We have provided both a first and second order accurate formulation of this delta
function in two and three dimensions. We have used this discrete delta function to compute various line and

surface integrals. Our computed examples show that the method realizes the expected order of accuracy.

The formulation of this discrete delta function is based on a method developed by Mayo [7,8] for the

solution of elliptic equations with discontinuities. In this approach, the Laplacian is discretized in a manner

that properly accounts for the jump conditions that need to be satisfied near the interface. In this way, the

jump conditions now appear as source terms in a nonhomogeneous elliptic equation. The resulting source

terms are, in fact, the discrete delta function.
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